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Estimating Atlantic meridional heat transport through Bayesian modelling of
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Introduction: Atlantic Meridional Overturning Circulation (AMOC)

A large system of ocean currents
that carry warm shallow water from
the tropics to the northern latitudes
and cold deep water southward
across the equator

Plays crucial role in redistributing
heat, freshwater and dissolved
gases

Has pivotal role in regulating the
earth’s climate system and the
biosphere

Largely viewed as a “Global conveyor belt”
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Motivation: To what extent does the AMOC function like a conveyor belt?

=  QObservations across various latitudes reveal a
lack of meridional coherence, challenging the
N theoretical framework of the conveyor belt
D, 20 -
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Main objectives of EPOC

EPOC has five overarching scientific objectives:

= Generate comprehensive records of AMOC transports across the whole Atlantic, to assess the
timescales of transport variability and the degree to which the AMOC behaves as a conveyor belt

=  Determine key processes that make-or-break meridional connectivity of ocean transports, and assess
their representation in models, especially in high resolution coupled simulations

= |dentify the processes and drivers of recent change in the AMOC and infer the likely roles of natural
and anthropogenic forcings, and internal variability

= Assess the key processes of future AMOC changes and identify indicators of abrupt changes and
AMOC related climate impacts with societal relevance

= Design, and deploy elements of, a next generation observing system for the entire system of the
AMOC




Possible Approach: Using the budget equation

Following Kelly et al. (2014, 2016), we model non-seasonal heat and freshwater budgets in terms of sea-level

components:

Heat budget
I Freshwater budget

OTSL  a \
_ Lonet | g, ' 9HSL \
at  poly —; = BSo(P —E) +Us
TSL: Thermosteric sea level HSL: Halosteric sea level
Ur: Convergence of TSL Us: Convergence of HSL

U The goal is to infer Uy and Us by evaluating the budgets using observational data

TSL standard errors and Argo profiles in Jan 2010

Main Caveats

= The gridded hydrographic data used here are based on
Argo data that are sparse in both space and time

TSL error (cm)

= This leads to noisy and biased estimates of TSL and HSL




Our approach: Bayesian Hierarchical modeling - Some basics of Bayesian Hierarchical Modeling

Prior
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Likelihood
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Posterior Inference

= The Bayesian approach allows to
determine the posterior distribution by

combining the prior knowledge and
the likelihood

= Rigorous error propagation
= Suitable for data poor regions

= Computationally light compared to
numerical models

lational




Some basics of Bayesian Hierarchical Modeling

~
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(b) Bayesian-specific workflow
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Datasets used

Ocean mass: Gravimetry

Hydrography : Argo

5. At the surface 1. Descends (arounds 6
(around 12 hours). )

- sending data to the -
satellite.

SSH — OM = TSL+HSL

Sea surface height : Satellite altimetry
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Our model

from observations

We use a statistical modelling approach to get the heat and fresh-water distribution by combining prior knowledge obtained

Data layer
3-month means on 3°x 3°grid Spatial averages over budget regions
GRACE  Altimetry Argo Floats Surface Heat Flux (Q)
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Process layer
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Spatiotemporal dependence:
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Heat transport convergence (HTC)

Spatiotemporal dependence:
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Parameter layer Meridional heat
Prior distributions transport
Error variances, autocorrelation parameters, etc.
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Benefits of our approach

Estimates of TSL and HSL are
constrained by using data from
satellite altimetry, GRACE, and ARGO

Joint spatiotemporal modelling of all
observational datasets and their error
structures

Information sharing across both
datasets and space

Missing data are accommodated

Rigorous error propagation

Prior information incorporation i




Results: Validation of Bayesian estimates of Meridional Heat Transport (MHT)

(@) BHM1 (b) BHM2 .
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Results: Meridional coherence of the heat transport

MHT anomalies MHT anomalies (low-pass filtered)
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The results from our estimates can be used while designing the next generation observation framework !!




Results: Time-mean MHT across latitudes
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Summary & Conclusion

* The non-seasonal components of meridional heat transport is estimated in terms of sea level

= The spatio-temporal fusion of observations through a Bayesian modeling approach allows the
estimation of MHT as a probabilistic distribution

= Computationally light and efficient for poorly sampled oceanic regions

= The estimates depend on the constant of integration at a given reference latitude

Ref: Calafat, F. M., Vallivattathillam, P., and Frajka-Williams, E.: Estimates of Atlantic meridional heat transport
from spatiotemporal fusion of Argo, altimetry and gravimetry data, EGUsphere [preprint],
https://doi.org/10.5194/egusphere-2025-1216, 2025.
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Key gateways for the Atlantic
water inflow:

Iceland-Faroe ridge
FSC-FIM

FIC

SSC

Norwegian entrance
Norwegian exit

NSC

N EWNRE

Key gateways for
polar/transformed water outflow:

1. Fram Strait
2. North of Iceland




Future response of the mean circulation in the upper layer (0-200m average)
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Interesting transformation of large-scale circulation patterns in response to
climate change !
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